Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: CE in CMs and XXL VLDL


BLQ: CE in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.647[0.640, 0.654]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.637[0.630, 0.644]1.6x10-292
white BritishGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.656[0.649, 0.663]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.642[0.635, 0.649]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.649[0.642, 0.656]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.650[0.643, 0.657]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.705[0.698, 0.712]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.674[0.642, 0.706]1.4x10-21
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.633[0.600, 0.665]1.2x10-13
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.640[0.608, 0.672]1.1x10-14
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.627[0.595, 0.658]1.3x10-12
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.676[0.644, 0.708]7.6x10-22
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.677[0.645, 0.708]6.0x10-22
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.718[0.688, 0.749]1.8x10-31
South AsianCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.563[0.496, 0.631]6.4x10-02
South AsianGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.659[0.595, 0.723]3.2x10-06
South AsianGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.665[0.601, 0.728]5.5x10-06
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.646[0.582, 0.710]1.5x10-05
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.565[0.498, 0.632]6.8x10-02
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.566[0.499, 0.633]6.7x10-02
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.627[0.560, 0.694]7.9x10-05
AfricanCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.624[0.578, 0.671]6.2x10-07
AfricanGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.585[0.538, 0.631]2.1x10-04
AfricanGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.593[0.547, 0.639]9.0x10-05
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.581[0.535, 0.628]1.1x10-03
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.625[0.579, 0.671]5.4x10-07
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.625[0.579, 0.672]5.1x10-07
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.642[0.597, 0.688]5.4x10-09
OthersCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.670[0.651, 0.690]4.0x10-57
OthersGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.606[0.586, 0.626]3.8x10-23
OthersGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.620[0.600, 0.640]1.2x10-29
OthersGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.617[0.597, 0.638]4.1x10-27
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.671[0.651, 0.690]6.1x10-57
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.671[0.652, 0.690]3.6x10-57
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.704[0.685, 0.723]2.8x10-77

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023785/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3397 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61609611376:160961137:T:Crs3798220CPAVsLPA0.337695423655836
61610101186:161010118:A:Grs10455872GIntronicLPA0.272412535327407
1111664891711:116648917:G:Crs964184CUTRZPR10.267335610380195
8198135298:19813529:A:Grs268GPAVsLPL-0.266596427691262
8198197248:19819724:C:Grs328GPTVsLPL0.221618950554188
19842932319:8429323:G:Ars116843064APAVsANGPTL40.201621385192784
1111669229311:116692293:C:Ars12721043APAVsAPOA40.166896789820944
2212252812:21225281:C:Trs1042034TPAVsAPOB-0.142243192876366
2277309402:27730940:T:Crs1260326CPAVsGCKR0.119724452234862
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.106157453159693
194541445119:45414451:T:Crs439401COthersAPOC1-0.0915477256834371
194541564019:45415640:G:Ars445925AOthersAPOC1-0.0867170915197573
165699332416:56993324:C:Ars3764261AOthersCETP0.0843949997360345
1629075951:62907595:A:Grs656297GIntronicUSP10.0740754640382036
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS2-0.0731883442195126
8198194398:19819439:A:Grs326GIntronicLPL0.0672790198846083
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0647602262893226
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B20.062627818608558
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0606576229837188
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.0595972592489314
12303018111:230301811:T:Grs11122450GIntronicGALNT20.0557392359184761
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0500000027796377
71304382147:130438214:G:Ars13234407AOthers0.0498973311845628
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0492232027677726
5558618945:55861894:G:Ars9687846AIntronic-0.0468694020087343
81264817478:126481747:A:Grs2980875GIntronic0.0445477303966838
8198057088:19805708:G:Ars1801177APAVsLPL-0.0443957343647329
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0436907168203142
1111666240711:116662407:G:Crs3135506CPAVsAPOA5-0.0414383605333227
81265073898:126507389:C:Ars2954038AIntronic0.0410126101838578
61609603596:160960359:T:Crs6919346CIntronicLPA0.0395369532939114
1111672863011:116728630:G:Crs12225230CPAVsSIK30.0366385252152698
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0365247864827199
61611070186:161107018:G:Ars9457997AOthers0.0362478961583347
2212315242:21231524:G:Ars676210APAVsAPOB0.0357890715864765
7259918267:25991826:T:Crs4722551COthersMIR148A0.0349738812879674
51563916285:156391628:T:Crs6874202COthersTIMD4-0.0342361286110331
1212442730612:124427306:T:Ars11057401APAVsCCDC920.033936828156177
1272785731:27278573:T:Crs17360994CPAVsKDF1-0.0338682545510373
8199414488:19941448:C:Trs6989064TIntronic0.0328162601409855
1111666370711:116663707:G:Ars662799AOthersAPOA50.0323226698691108
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0322353686667411
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.0315801678352379
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0302233591107668
22196688132:219668813:A:Grs6436089GIntronicCYP27A10.0301823589513906
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.0301544341434449
165701509116:57015091:G:Crs5880CPAVsCETP-0.029886441082971
7730328357:73032835:T:Crs7785479CIntronicMLXIPL0.0295523505048936
81264882508:126488250:C:Trs2980869TIntronic0.0290551229650077
8116126988:11612698:C:Ars804280AIntronicGATA40.028884936519149
125784371112:57843711:G:Ars2229357APAVsINHBC0.0281448826114004
1111663994111:116639941:A:Grs1263149GIntronicBUD130.0280334908298162
51187692985:118769298:A:Crs154632COthers0.025870897108448
4261268384:26126838:A:Grs7673206GOthers-0.0252804895767919
17489217617:4892176:C:Grs74744272GPAVsINCA1-0.0251335006785902
204453465120:44534651:G:Ars6065904AIntronicPLTP-0.0249269438729228
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0247905403723803
61610181746:161018174:C:Trs7770628TIntronicLPA-0.0245115242745797
194920667419:49206674:G:Ars601338APTVsFUT2-0.0238048168957275
1111704237711:117042377:G:Ars4936367APAVsPAFAH1B20.0237472570512993
126977107312:69771073:G:Trs315122TIntronicYEATS40.0236933031161201
6526177316:52617731:C:Grs2180314GPAVsGSTA20.0230283759115227
1113481613311:134816133:C:Trs6590781TOthers-0.0227925212052179
4879967454:87996745:G:Ars17605615AIntronicAFF1-0.0227149250938368
61611522406:161152240:G:Ars4252125APAVsPLG-0.0226963444195348
1111895217311:118952173:A:Grs15818GPAVsVPS11-0.0223681546258829
5557991845:55799184:C:Ars157843AOthers-0.0222759019576558
22271014112:227101411:A:Grs2972144GOthers-0.0221658377854241
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0221568432555028
109481905310:94819053:C:Trs8211TUTREXOC6-0.0219078659068386
3449292873:44929287:G:Crs2271087CPAVsTGM4-0.021761475810168
4880522194:88052219:T:Crs342467CPAVsAFF1-0.0215619764035028
20655142120:6551421:G:Ars2104012AOthers0.0214757370556478
105520274810:55202748:G:Ars365453AOthers0.0214520852595881
113068602011:30686020:C:Trs17320372TOthers-0.0213513558746199
8593392798:59339279:T:Crs7007181CIntronicUBXN2B0.0212007476695984
116856232811:68562328:C:Trs2229738TPAVsCPT1A-0.0211405620551599
4897394794:89739479:C:Trs13131633TIntronicFAM13A-0.0209421652959512
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0207679288198571
161513197416:15131974:G:Trs1136001TPAVsNTAN1-0.0207467556581887
8198244928:19824492:T:Crs13702CUTRLPL0.0206001749094951
1311454901513:114549015:T:Crs6602910CIntronicGAS6-0.0205882837073385
61260756986:126075698:T:Crs1935978CPAVsHEY20.0203430416224451
22271163652:227116365:A:Grs2972143GOthers-0.020335998471803
223854561922:38545619:A:Grs6001027GIntronicPLA2G60.0202056658391097
51565317365:156531736:C:Ars1036199APAVsHAVCR2-0.020039495788244
182112044418:21120444:T:Crs1805082CPAVsNPC10.0200070233226993
165699723316:56997233:G:Ars1864163AIntronicCETP-0.0198523205271221
165700659016:57006590:C:Trs7499892TIntronicCETP-0.0197918666179182
61609175596:160917559:C:Trs3127569TIntronicLPAL2-0.0196424147036902
8182724388:18272438:C:Trs4921914TOthers0.0195968344648401
204560263820:45602638:G:Ars6066149AIntronicEYA20.0193953659151478
154381805215:43818052:G:Ars2245715APAVsMAP1A-0.0193184382505894
139523182513:95231825:G:Ars2275647AOthersTGDS-0.0192626813091539
5558608665:55860866:G:Trs3936510TIntronic-0.0192162791832309
156334562215:63345622:G:Ars7170462AIntronicTPM1-0.0192082411893609
22423956742:242395674:G:Ars4675812AIntronicFARP20.018938592906693
8106490868:10649086:C:Ars10107180AIntronicPINX1, SOX7-0.018928826323275
61605074786:160507478:A:Grs3798178GIntronicIGF2R0.018781023003029
31567977023:156797702:G:Ars10049090AOthers0.0187677471578011

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3397 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References