Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: CE to Tot. Lipids in CMs and XXL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (derived)AUROC0.639[0.631, 0.647]2.0x10-242
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.458[0.449, 0.466]1.3x10-25
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.469[0.461, 0.478]9.6x10-15
white BritishGenotype-only modelBLQ (derived)AUROC0.629[0.621, 0.637]3.4x10-215
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.519[0.510, 0.527]5.6x10-05
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.524[0.516, 0.533]1.0x10-07
white BritishFull model (covariates and genotypes)BLQ (derived)AUROC0.689[0.681, 0.696]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (derived)AUROC0.688[0.653, 0.722]2.1x10-21
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.473[0.434, 0.511]1.3x10-01
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.493[0.454, 0.533]7.1x10-01
Non-British whiteGenotype-only modelBLQ (derived)AUROC0.611[0.577, 0.646]5.5x10-09
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.554[0.514, 0.593]5.0x10-03
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.567[0.527, 0.606]3.6x10-04
Non-British whiteFull model (covariates and genotypes)BLQ (derived)AUROC0.722[0.689, 0.754]6.6x10-28
South AsianCovariate-only modelBLQ (derived)AUROC0.562[0.490, 0.634]7.1x10-02
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.469[0.400, 0.537]3.4x10-01
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.475[0.403, 0.546]4.7x10-01
South AsianGenotype-only modelBLQ (derived)AUROC0.660[0.594, 0.725]1.6x10-06
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.500[0.433, 0.567]9.8x10-01
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.509[0.439, 0.578]9.0x10-01
South AsianFull model (covariates and genotypes)BLQ (derived)AUROC0.630[0.561, 0.700]5.4x10-05
AfricanCovariate-only modelBLQ (derived)AUROC0.598[0.550, 0.646]2.3x10-04
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.478[0.428, 0.527]3.8x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.481[0.431, 0.531]6.0x10-01
AfricanGenotype-only modelBLQ (derived)AUROC0.551[0.501, 0.600]5.2x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.529[0.480, 0.579]2.0x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.525[0.475, 0.575]1.8x10-01
AfricanFull model (covariates and genotypes)BLQ (derived)AUROC0.606[0.558, 0.654]3.5x10-05
OthersCovariate-only modelBLQ (derived)AUROC0.665[0.644, 0.686]3.1x10-45
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.472[0.449, 0.495]1.8x10-02
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.481[0.458, 0.505]1.4x10-01
OthersGenotype-only modelBLQ (derived)AUROC0.608[0.586, 0.630]1.0x10-20
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.551[0.528, 0.574]6.7x10-06
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.555[0.532, 0.578]1.6x10-06
OthersFull model (covariates and genotypes)BLQ (derived)AUROC0.693[0.673, 0.713]7.8x10-60

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023881/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 2675 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1111664891711:116648917:G:Crs964184CUTRZPR10.288942134718257
8198135298:19813529:A:Grs268GPAVsLPL-0.251484339446679
19842932319:8429323:G:Ars116843064APAVsANGPTL40.186906519894909
61610101186:161010118:A:Grs10455872GIntronicLPA0.18546304036511
8198197248:19819724:C:Grs328GPTVsLPL0.173595598957791
61609611376:160961137:T:Crs3798220CPAVsLPA0.17228219255436
2212315242:21231524:G:Ars676210APAVsAPOB0.141311125055265
2277309402:27730940:T:Crs1260326CPAVsGCKR0.117261373614332
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0865272651262994
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0684789625857078
194541445119:45414451:T:Crs439401COthersAPOC1-0.0623089502859059
8198194398:19819439:A:Grs326GIntronicLPL0.0594568164557744
81264817478:126481747:A:Grs2980875GIntronic0.0589690180838264
194541564019:45415640:G:Ars445925AOthersAPOC1-0.0583676862359021
12303018111:230301811:T:Grs11122450GIntronicGALNT20.0554707439681952
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.0547278662308075
165701509116:57015091:G:Crs5880CPAVsCETP-0.0522731450603141
5558618945:55861894:G:Ars9687846AIntronic-0.0518608811851704
71304382147:130438214:G:Ars13234407AOthers0.0508862066787348
165699071616:56990716:C:Ars247617AOthers0.0494397767269255
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS2-0.048028983321385
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0468132041395468
1111669229311:116692293:C:Ars12721043APAVsAPOA40.0458554877328823
165699332416:56993324:C:Ars3764261AOthersCETP0.0445821121485261
1629400971:62940097:G:Ars1979722AIntronicDOCK70.042619893892212
1212442730612:124427306:T:Ars11057401APAVsCCDC920.0404320380292769
165700659016:57006590:C:Trs7499892TIntronicCETP-0.038049852348603
204457650220:44576502:T:Crs7679CUTRPCIF1-0.0332770704345858
1630722651:63072265:A:Crs10789117CIntronicDOCK70.0332663311129189
8199430278:19943027:G:Ars13265868AIntronic0.0315765750898921
1111704237711:117042377:G:Ars4936367APAVsPAFAH1B20.0298594402139915
204454504820:44545048:C:Trs4810479TOthersPLTP0.0298283274066484
81265073898:126507389:C:Ars2954038AIntronic0.0294927356478359
116403124111:64031241:C:Trs35169799TPAVsPLCB3-0.0292157698296877
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0286045307046705
116160351011:61603510:C:Ars174576AIntronicFADS2-0.0285681492087024
204455401520:44554015:T:Crs6065906COthers-0.0277218887623855
61611070186:161107018:G:Ars9457997AOthers0.0272620620697165
8116126988:11612698:C:Ars804280AIntronicGATA40.0271657959335028
19719497619:7194976:A:Grs4804377GIntronicINSR0.0271525226460903
7730328357:73032835:T:Crs7785479CIntronicMLXIPL0.0263118185327403
204453465120:44534651:G:Ars6065904AIntronicPLTP-0.0259516513816317
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0257403548802208
4261268384:26126838:A:Grs7673206GOthers-0.0255569758772121
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0253088560558982
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.025298995869624
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.0252698823176975
194920667419:49206674:G:Ars601338APTVsFUT2-0.0246387526582252
22271163652:227116365:A:Grs2972143GOthers-0.0245588727360422
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0239223298561311
22272320472:227232047:T:Grs12475332GOthers0.0237987951638474
1631181961:63118196:A:Crs10889353CIntronicDOCK70.0236238549239845
4897394794:89739479:C:Trs13131633TIntronicFAM13A-0.0233287496210423
22271014112:227101411:A:Grs2972144GOthers-0.0232534343999142
4880522194:88052219:T:Crs342467CPAVsAFF1-0.0231796006980116
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0229780404587485
8198246678:19824667:C:Trs15285TUTRLPL0.0228611691239279
165699723316:56997233:G:Ars1864163AIntronicCETP-0.0218329645012358
114826673611:48266736:C:Grs7120775GPTVsOR4X20.0217235230662111
8199414488:19941448:C:Trs6989064TIntronic0.0214459612847306
125784371112:57843711:G:Ars2229357APAVsINHBC0.0213521714423125
4877699294:87769929:T:Crs13106574CPAVsSLC10A6-0.0212903814240194
9866172659:86617265:A:Grs1982151GPAVsRMI1-0.0211703482943227
2212252812:21225281:C:Trs1042034TPAVsAPOB-0.0211023541572291
195748842319:57488423:C:Trs8102873TOthers-0.0209295830251739
1212450428312:124504283:T:Crs825508CIntronicRFLNA-0.0207608560135321
51565317365:156531736:C:Ars1036199APAVsHAVCR2-0.0206498670110736
51187692985:118769298:A:Crs154632COthers0.0203515854364148
174703913217:47039132:T:Crs2291725CPAVsGIP-0.0198766196532094
7969896247:96989624:G:Ars7810629AOthers0.0198206328377808
113068602011:30686020:C:Trs17320372TOthers-0.0196585504289687
168101230316:81012303:C:Ars9937731APTVsCMC20.019512888193538
8198244928:19824492:T:Crs13702CUTRLPL0.0194901005059118
61275297806:127529780:G:Ars72961013AOthers-0.0194512869560327
133101290413:31012904:C:Trs1928496TOthers-0.0190514487647153
3523596783:52359678:T:Crs6796333CIntronicDNAH10.0189829083844178
161513197416:15131974:G:Trs1136001TPAVsNTAN1-0.0188533148263836
685347156:8534715:A:Grs230245GOthers0.0187152539389554
159746926315:97469263:C:Ars2215469AOthers-0.0186404610927719
182112044418:21120444:T:Crs1805082CPAVsNPC10.0184374420176507
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0180801848732657
114764042911:47640429:G:Crs1064608CPAVsMTCH2-0.0179835731476485
116856232811:68562328:C:Trs2229738TPAVsCPT1A-0.0178884032186648
1115273041:11527304:T:Crs7543377COthers-0.0178533757686917
137121314713:71213147:T:Crs7987027COthers-0.0177986048601755
126977107312:69771073:G:Trs315122TIntronicYEATS40.0177862863046824
1212463455612:124634556:C:Trs11057464TIntronicRFLNA0.0177439529262279
3449292873:44929287:G:Crs2271087CPAVsTGM4-0.0177344270622681
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0173783317678691
430391504:3039150:T:Crs1801058CPAVsGRK4-0.0173774401555119
7730170057:73017005:A:Grs13226650GIntronicMLXIPL0.0173100222392434
1111895217311:118952173:A:Grs15818GPAVsVPS11-0.0172893063611956
434460914:3446091:G:Trs3748034TPAVsHGFAC-0.0172302530326867
176682044917:66820449:T:Crs8067199COthers0.0172051386575348
81165706308:116570630:G:Ars6469597AIntronicTRPS10.0170846538864662
4882313924:88231392:T:TArs72613567TAPAVsHSD17B13-0.0169407208553378
22196688132:219668813:A:Grs6436089GIntronicCYP27A10.0167978627155357
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0166612437085487
2992261722:99226172:AT:Ars66468243APTVsUNC50-0.0166282758319875
61266664166:126666416:C:Trs6907898TIntronicCENPW0.0165556817974604

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 2675 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References