Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: PLs to Tot. Lipids in XL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (derived)AUROC0.665[0.655, 0.674]1.1x10-247
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.554[0.544, 0.564]8.1x10-29
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.605[0.596, 0.615]6.5x10-104
white BritishGenotype-only modelBLQ (derived)AUROC0.624[0.615, 0.634]1.4x10-138
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.674[0.665, 0.684]3.2x10-269
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.697[0.688, 0.706]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)AUROC0.708[0.699, 0.717]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (derived)AUROC0.708[0.669, 0.747]1.4x10-19
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.569[0.524, 0.614]1.3x10-03
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.583[0.539, 0.628]1.4x10-04
Non-British whiteGenotype-only modelBLQ (derived)AUROC0.600[0.557, 0.642]1.2x10-06
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.714[0.674, 0.754]2.0x10-21
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.714[0.675, 0.752]8.5x10-21
Non-British whiteFull model (covariates and genotypes)BLQ (derived)AUROC0.733[0.695, 0.772]8.4x10-24
South AsianCovariate-only modelBLQ (derived)AUROC0.649[0.571, 0.727]3.5x10-04
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.556[0.478, 0.635]1.7x10-01
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.620[0.545, 0.696]7.9x10-03
South AsianGenotype-only modelBLQ (derived)AUROC0.654[0.572, 0.736]2.2x10-04
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.653[0.576, 0.729]1.8x10-04
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.681[0.604, 0.759]2.1x10-05
South AsianFull model (covariates and genotypes)BLQ (derived)AUROC0.695[0.614, 0.776]1.2x10-06
AfricanCovariate-only modelBLQ (derived)AUROC0.602[0.555, 0.650]5.7x10-05
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.556[0.508, 0.605]3.2x10-02
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.577[0.529, 0.624]4.5x10-03
AfricanGenotype-only modelBLQ (derived)AUROC0.582[0.533, 0.630]1.7x10-03
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.611[0.564, 0.658]9.9x10-06
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.619[0.573, 0.666]1.6x10-06
AfricanFull model (covariates and genotypes)BLQ (derived)AUROC0.621[0.574, 0.668]8.0x10-07
OthersCovariate-only modelBLQ (derived)AUROC0.689[0.664, 0.714]2.2x10-46
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)AUROC0.541[0.514, 0.568]1.9x10-03
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)AUROC0.579[0.552, 0.606]3.2x10-09
OthersGenotype-only modelBLQ (derived)AUROC0.610[0.583, 0.637]2.6x10-16
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)AUROC0.693[0.668, 0.717]1.1x10-45
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)AUROC0.700[0.676, 0.724]6.7x10-49
OthersFull model (covariates and genotypes)BLQ (derived)AUROC0.712[0.688, 0.736]1.4x10-54

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023884/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 2771 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1111664891711:116648917:G:Crs964184CUTRZPR10.286013636205232
61609611376:160961137:T:Crs3798220CPAVsLPA0.241644430184371
8198197248:19819724:C:Grs328GPTVsLPL0.20844974016156
61610101186:161010118:A:Grs10455872GIntronicLPA0.202079647909409
19842932319:8429323:G:Ars116843064APAVsANGPTL40.180857258684649
8198135298:19813529:A:Grs268GPAVsLPL-0.169796644423408
165699332416:56993324:C:Ars3764261AOthersCETP0.130251004799381
1111669229311:116692293:C:Ars12721043APAVsAPOA40.118758583894108
2277309402:27730940:T:Crs1260326CPAVsGCKR0.118228778418478
2212315242:21231524:G:Ars676210APAVsAPOB0.116887605836534
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0954824007682864
8198246678:19824667:C:Trs15285TUTRLPL0.0933040595083698
194541445119:45414451:T:Crs439401COthersAPOC1-0.0799819412082032
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0735971687739752
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.0728158121454438
165700659016:57006590:C:Trs7499892TIntronicCETP-0.0701618027750744
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0690488648445738
5558618945:55861894:G:Ars9687846AIntronic-0.0620906519787747
125784371112:57843711:G:Ars2229357APAVsINHBC0.0550844151983519
204453465120:44534651:G:Ars6065904AIntronicPLTP-0.049131716303377
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS2-0.0489826057460003
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0478551560765988
12302976591:230297659:C:Trs2281719TIntronicGALNT20.046386871984986
1212442730612:124427306:T:Ars11057401APAVsCCDC920.0421313426285249
81265073898:126507389:C:Ars2954038AIntronic0.0388282153906092
191120230619:11202306:G:Trs6511720TIntronicLDLR0.0379873870580186
51563902975:156390297:T:Crs6882076COthersTIMD4-0.0368012874089812
114727025511:47270255:C:Trs2167079TPAVsACP20.0367918505124971
61303741026:130374102:C:Ars9388768APAVsL3MBTL3-0.0354718577122724
7730328357:73032835:T:Crs7785479CIntronicMLXIPL0.0332997912008428
81264882508:126488250:C:Trs2980869TIntronic0.0320631237806465
81264817478:126481747:A:Grs2980875GIntronic0.0317066017216626
61605608456:160560845:A:Grs628031GPAVsSLC22A10.0312214558765163
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P-0.0311815124668113
8106780898:10678089:C:Ars1544981AIntronicPINX1, SOX7-0.0310454229552621
22271014112:227101411:A:Grs2972144GOthers-0.0308706223441828
81166119028:116611902:T:Crs2737206CIntronicTRPS10.0294769430148257
2212639002:21263900:G:Ars1367117APAVsAPOB-0.0292787493060764
1630270241:63027024:C:Trs4329540TIntronicDOCK7-0.0292191094675844
8199414488:19941448:C:Trs6989064TIntronic0.0289363742014881
1111895217311:118952173:A:Grs15818GPAVsVPS11-0.0276417293205903
165701509116:57015091:G:Crs5880CPAVsCETP-0.0275537622498683
1212454839412:124548394:A:Grs10846592GIntronicRFLNA0.0274679211876999
6437655336:43765533:A:Grs1885659GOthers-0.0265849994118374
1111704237711:117042377:G:Ars4936367APAVsPAFAH1B20.0264966629614219
134089500613:40895006:A:Crs4943767COthers0.0264679249927141
61611085366:161108536:C:Trs6935921TOthers0.0255933345953193
4897338824:89733882:A:Grs6814344GIntronicFAM13A-0.0254709469920991
41842091974:184209197:A:Grs10520554GIntronicWWC2-0.025385965983076
6327966856:32796685:A:Grs241448GPTVsTAP2-0.0251278953637654
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.024985354830931
182112044418:21120444:T:Crs1805082CPAVsNPC10.0249176955730604
20655546120:6555461:A:Grs6107836GOthers0.0248914553086172
1397970551:39797055:A:Grs16826069GPAVsMACF1-0.0247800608308039
7214963977:21496397:G:Trs6461563TIntronicSP4-0.0247366350815041
6720438976:72043897:A:Grs828630GIntronic0.0247013687335368
390911513:9091151:C:Grs610457GPAVsSRGAP3-0.0245648787214205
194628938519:46289385:CCAGGGGG:Crs1424895136CPTVsDMWD0.0242046728576829
31760040893:176004089:T:Crs17537411COthers0.0239406557655912
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B20.0239389014184387
122047375812:20473758:C:Ars7134375AOthers0.0238896024356893
1272785731:27278573:T:Crs17360994CPAVsKDF1-0.0238667076917841
191127513919:11275139:A:Crs7188CUTRKANK2-0.023848783327343
31357222643:135722264:A:Grs17197552GPAVsPPP2R3A-0.0236345906206979
1111726148811:117261488:C:Grs897837GPAVsCEP1640.0234561093163557
1111663994111:116639941:A:Grs1263149GIntronicBUD130.0233987871522623
112805795711:28057957:T:Crs10458896CPAVsKIF18A0.0229161226163412
1120441641:12044164:C:Trs1474868TIntronicMFN20.0228751434880265
12303241191:230324119:G:Ars627702AIntronicGALNT2-0.0228417358563408
22195453092:219545309:T:Crs2303565CPAVsSTK360.0225839031212321
19717024119:7170241:C:Trs7251963TIntronicINSR0.0225761875572745
1210720541312:107205413:T:Crs7964605CIntronicRIC8B-0.0224400852040528
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0223842790796592
1111174934911:111749349:A:Trs611010TPAVsALG9, FDXACB10.0222505640223003
4261268384:26126838:A:Grs7673206GOthers-0.0220899245391409
20463716820:4637168:C:Trs6116466TOthers-0.022007559846309
167214417416:72144174:T:Crs9302635CIntronicDHX380.0219784877145883
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0219510588045375
71360091877:136009187:A:Grs13240216GIntronic0.021677046780138
5746565395:74656539:T:Crs12916CUTRHMGCR-0.0215680243816118
7756150067:75615006:C:Trs1057868TPAVsPOR-0.0215372692100103
22221846402:222184640:A:Grs1430242GOthers-0.0214369770923801
2273233852:27323385:C:Trs1131375TPAVsCGREF1-0.021404448211505
1012404362910:124043629:T:Crs7098436CIntronicBTBD160.0211913779219987
3121120103:12112010:G:Ars598747AOthersACTG1P120.0211062661275193
81431902718:143190271:A:Grs902832GOthers-0.0210612850617837
21654550352:165455035:T:Crs12613292CIntronicGRB14-0.0209833741420527
6319290146:31929014:A:Crs437179CPAVsSKIC2-0.0207844299129431
195704087619:57040876:G:Ars3813143AUTRZNF4710.0207707009565319
347852303:4785230:G:Ars12638018AIntronicITPR1-0.0203375089275522
193390971019:33909710:T:Grs8182584GIntronicPEPD0.0201549091222739
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0201537466899336
31231799073:123179907:T:Crs11714453COthers-0.0201503738750004
194920667419:49206674:G:Ars601338APTVsFUT2-0.0201191212234466
5440599375:44059937:A:Grs4334895GOthers-0.0200701428237363
109357762410:93577624:A:Grs3802650GIntronicTNKS2-0.0195395190296095
6112391196:11239119:G:Ars9468690AIntronicNEDD9-0.0194681565095946
18854098318:8540983:T:Crs9950233COthersAKR1B1P6-0.019467301360015
8594342308:59434230:G:Ars7460495AOthers0.0194257139076696
156334562215:63345622:G:Ars7170462AIntronicTPM1-0.0194217628068585

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 2771 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References