Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Trunc.: PLs in CMs and XXL VLDL

  • Estimated h2 in white British population in UKB: 0.091 (95% CI:[0.072, 0.109]).

Trunc.: PLs in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelTruncated (excl. BLQ measurements)R20.034[0.030, 0.037]3.4x10-223
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.055[0.050, 0.059]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.072[0.067, 0.077]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.062[0.058, 0.067]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.056[0.051, 0.060]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.111[0.105, 0.117]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.101[0.095, 0.107]<1.0x10-300
Non-British whiteCovariate-only modelTruncated (excl. BLQ measurements)R20.023[0.008, 0.038]3.0x10-07
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.049[0.028, 0.071]4.1x10-14
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.080[0.054, 0.106]2.7x10-22
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.073[0.048, 0.098]2.4x10-20
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.050[0.029, 0.072]2.5x10-14
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.109[0.080, 0.139]3.5x10-30
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.100[0.071, 0.128]1.5x10-27
South AsianCovariate-only modelTruncated (excl. BLQ measurements)R20.011[-0.004, 0.026]7.5x10-03
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.042[0.014, 0.071]1.5x10-07
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.076[0.040, 0.113]1.1x10-12
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.066[0.032, 0.101]3.7x10-11
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.043[0.015, 0.072]1.2x10-07
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.086[0.048, 0.124]3.9x10-14
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.070[0.035, 0.105]1.1x10-11
AfricanCovariate-only modelTruncated (excl. BLQ measurements)R20.002[-0.005, 0.009]5.5x10-01
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.013[-0.006, 0.031]1.2x10-01
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.019[-0.003, 0.041]5.2x10-02
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.007[-0.007, 0.020]2.5x10-01
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.012[-0.006, 0.030]1.2x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.017[-0.004, 0.038]6.9x10-02
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.007[-0.007, 0.021]2.4x10-01
OthersCovariate-only modelTruncated (excl. BLQ measurements)R20.045[0.032, 0.057]8.1x10-34
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.046[0.034, 0.058]1.1x10-34
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.062[0.048, 0.076]8.6x10-47
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.053[0.040, 0.066]2.7x10-40
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.047[0.035, 0.059]1.3x10-35
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.111[0.093, 0.129]1.2x10-84
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.103[0.086, 0.120]2.2x10-78

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023483/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 6361 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0045992448342106
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0034280572732295
8198197248:19819724:C:Grs328GPTVsLPL-0.0032233489472684
8198135298:19813529:A:Grs268GPAVsLPL0.0030369996447663
194541564019:45415640:G:Ars445925AOthersAPOC10.0030216204145894
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0028654402062346
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0027034443856666
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.002397913794724
2212315242:21231524:G:Ars676210APAVsAPOB-0.0018203357685415
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0018175467085573
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0018170962474216
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0016674727418651
194541445119:45414451:T:Crs439401COthersAPOC10.0012773080281404
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0012601927706752
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.001241528144804
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0012134956310867
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0010578392058493
81265073898:126507389:C:Ars2954038AIntronic-0.0010302870737085
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0009007543862333
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0008892458061825
8182724388:18272438:C:Trs4921914TOthers-0.0008302763953474
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0007969783478653
1630270241:63027024:C:Trs4329540TIntronicDOCK70.000717472334146
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0007145851208666
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0006644287212098
22270998542:227099854:T:Crs2972147COthers0.0006516896259623
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0006438770979722
224432472722:44324727:C:Grs738409GPAVsPNPLA3-0.000643488578036
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0006335662014564
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0006288653168168
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0006108087446862
165699071616:56990716:C:Ars247617AOthers-0.0006015719889323
61610995036:161099503:G:Ars5014650AOthers-0.0005879614860098
8198521348:19852134:G:Trs17411024TOthers0.0005682684378874
116157138211:61571382:G:Ars174549AUTRFADS10.0005640840278425
81264882508:126488250:C:Trs2980869TIntronic-0.0005605097813176
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0005509733808855
81264793628:126479362:C:Trs6982502TIntronic-0.0005452273960883
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0005343717713375
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0005270347388626
61398340126:139834012:T:Grs632057GOthers-0.0005268550824305
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.0005085272865292
8199145988:19914598:C:Ars6586891AOthers-0.0004995182129296
5558618945:55861894:G:Ars9687846AIntronic0.0004822580477088
61611085366:161108536:C:Trs6935921TOthers-0.0004722145737767
61607663216:160766321:C:Trs540713TOthersSLC22A30.0004690407436043
8198194398:19819439:A:Grs326GIntronicLPL-0.0004539045910426
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0004525551442882
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0004502052846613
5557991845:55799184:C:Ars157843AOthers0.0004386378331907
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0004343420979692
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0004154805580182
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0004037221820744
1629316321:62931632:C:Ars1167998AIntronicDOCK70.0004006152086119
71304333847:130433384:C:Trs4731702TOthers-0.0003999017401991
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0003991146190691
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0003958489401513
156379323815:63793238:T:Grs11635675GOthersUSP30.000388249662291
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0003835007579922
1311455313413:114553134:C:Trs7994900TIntronicGAS60.000372502709098
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0003690740081669
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0003663120597078
5558608665:55860866:G:Trs3936510TIntronic0.0003656714085379
51563916285:156391628:T:Crs6874202COthersTIMD40.0003584071617
11544269701:154426970:A:Crs2228145CPAVsIL6R0.000358127296094
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0003579584629254
8199430278:19943027:G:Ars13265868AIntronic-0.0003554532599229
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0003518390224635
108109607110:81096071:T:Crs7077812COthers0.0003503010330684
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0003458899194685
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0003458058785687
111335577011:13355770:C:Trs6486121TIntronicBMAL10.0003446201877458
204454504820:44545048:C:Trs4810479TOthersPLTP-0.000339020605304
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0003310773714178
223856900622:38569006:A:Grs738322GIntronicPLA2G6-0.0003295594346051
2212288272:21228827:C:Trs1801701TPAVsAPOB-0.0003284545935875
116160034211:61600342:A:Crs174574CIntronicFADS2-0.000327552020127
21629040132:162904013:T:Crs116302758CPTVsDPP4-0.0003259125502581
61611522406:161152240:G:Ars4252125APAVsPLG0.0003178629874784
1248868181:24886818:G:Ars12122463AIntronicNCMAP0.0003098846949708
4882313924:88231392:T:TArs72613567TAPAVsHSD17B130.0003063754933812
10524778410:5247784:C:Grs3829125GPAVsAKR1C4-0.000304230529137
147138384814:71383848:T:Crs2810073CIntronicPCNX10.0003041601601641
1111643961511:116439615:C:Trs7928307TOthers0.0003021479024102
6437570826:43757082:T:Ars4711750AOthersVEGFA0.0003020024490282
167970491516:79704915:G:Trs8047723TOthers0.0003011761107292
8594120668:59412066:T:Grs8192870GIntronicCYP7A1-0.0003003863179764
1111651152211:116511522:C:Trs519000TIntronic0.0003000902032684
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0002999924010015
4879729684:87972968:T:Crs6531948CIntronicAFF10.0002986694055028
154409392715:44093927:T:Crs12702CPAVsHYPK, SERF20.0002982878779969
61611070186:161107018:G:Ars9457997AOthers-0.000294602752532
1111726631211:117266312:C:Grs2305830GPAVsCEP1640.0002912855344192
7756150067:75615006:C:Trs1057868TPAVsPOR0.0002883294338603
177639543017:76395430:C:Trs2292642TPAVsPGS1-0.0002848198132278
1210990915412:109909154:G:Trs12822974TPAVsKCTD100.0002842503934525
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0002833637973586
161517211816:15172118:T:Crs11644601CIntronicPDXDC1, RRN3-0.0002817162485353
112770136511:27701365:G:Ars10835211AIntronicBDNF, BDNF-AS0.0002793116162262
176651985717:66519857:C:CTrs3841514CTPTVsPRKAR1A0.0002787804500993

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 6361 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References