Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Trunc.: CE in CMs and XXL VLDL

  • Estimated h2 in white British population in UKB: 0.095 (95% CI:[0.077, 0.113]).

Trunc.: CE in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelTruncated (excl. BLQ measurements)R20.035[0.032, 0.039]2.6x10-246
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.058[0.054, 0.063]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.082[0.077, 0.087]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.073[0.068, 0.078]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.059[0.055, 0.064]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.122[0.116, 0.128]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.114[0.108, 0.120]<1.0x10-300
Non-British whiteCovariate-only modelTruncated (excl. BLQ measurements)R20.027[0.011, 0.043]1.1x10-08
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.069[0.045, 0.094]2.0x10-20
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.087[0.060, 0.114]2.1x10-25
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.083[0.057, 0.110]1.7x10-24
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.070[0.046, 0.095]9.8x10-21
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.119[0.089, 0.150]7.5x10-35
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.114[0.085, 0.144]1.8x10-33
South AsianCovariate-only modelTruncated (excl. BLQ measurements)R20.020[-0.000, 0.039]3.1x10-04
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.047[0.017, 0.076]2.0x10-08
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.089[0.050, 0.127]5.4x10-15
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.082[0.044, 0.119]6.5x10-14
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.047[0.018, 0.077]1.5x10-08
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.107[0.065, 0.148]7.2x10-18
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.094[0.054, 0.133]8.8x10-16
AfricanCovariate-only modelTruncated (excl. BLQ measurements)R20.002[-0.006, 0.010]4.4x10-01
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.013[-0.005, 0.031]6.9x10-02
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.034[0.005, 0.063]2.9x10-03
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.021[-0.002, 0.044]2.0x10-02
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.013[-0.005, 0.031]6.8x10-02
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.030[0.003, 0.057]5.4x10-03
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.018[-0.004, 0.039]3.3x10-02
OthersCovariate-only modelTruncated (excl. BLQ measurements)R20.045[0.033, 0.058]8.6x10-36
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.043[0.032, 0.055]2.3x10-34
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.066[0.052, 0.080]8.8x10-52
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.055[0.042, 0.069]1.5x10-43
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.045[0.032, 0.057]3.9x10-35
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.116[0.098, 0.134]1.9x10-92
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.107[0.090, 0.125]9.0x10-85

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023485/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 6945 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0034339589590488
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0025018026347267
8198197248:19819724:C:Grs328GPTVsLPL-0.0024872079611238
8198135298:19813529:A:Grs268GPAVsLPL0.0024578941164674
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0020893774470927
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0020781418437873
194541564019:45415640:G:Ars445925AOthersAPOC10.0020321419967258
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0019675896538634
2212315242:21231524:G:Ars676210APAVsAPOB-0.0016418220203429
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0015092340728249
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0014673118589084
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0013919904750982
194541445119:45414451:T:Crs439401COthersAPOC10.0010866960420562
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0010665282795761
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0010431170589661
81265073898:126507389:C:Ars2954038AIntronic-0.000812101413641
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0007938673591208
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0007892197681688
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0007757681897595
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.000690154209788
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0006449679927935
8182724388:18272438:C:Trs4921914TOthers-0.0006250808986052
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0005790954026143
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0005433855882196
165699332416:56993324:C:Ars3764261AOthersCETP-0.0005305484738932
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0005111957959959
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0005089440484379
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0005076981594723
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0005013975387315
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0004989506487478
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0004919847676573
81264882508:126488250:C:Trs2980869TIntronic-0.0004834634962556
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.000460104526941
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.000459832052483
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0004532317070241
8198194398:19819439:A:Grs326GIntronicLPL-0.0004508015634418
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0004424258325856
61398340126:139834012:T:Grs632057GOthers-0.000434335040371
116157138211:61571382:G:Ars174549AUTRFADS10.0004213356045367
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0004205363200889
61611070186:161107018:G:Ars9457997AOthers-0.0004086020598604
8199145988:19914598:C:Ars6586891AOthers-0.0004044352850506
5558618945:55861894:G:Ars9687846AIntronic0.0004031413827451
165701509116:57015091:G:Crs5880CPAVsCETP0.0003895924579811
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0003795374683289
51563960035:156396003:C:Trs12657266TOthers0.0003718077884774
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0003682276883518
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0003661607300759
61611085366:161108536:C:Trs6935921TOthers-0.0003434374460855
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0003381345862552
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0003264827831545
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0003242993139479
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0003217372644231
81264793628:126479362:C:Trs6982502TIntronic-0.0003197812864408
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0003176767968869
165699071616:56990716:C:Ars247617AOthers-0.0003167775422007
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0003135792418653
61607663216:160766321:C:Trs540713TOthersSLC22A30.0003112856630721
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0003079564580141
22270998542:227099854:T:Crs2972147COthers0.0003045389770916
10524778410:5247784:C:Grs3829125GPAVsAKR1C4-0.0003035330375989
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0003030027255095
1111651152211:116511522:C:Trs519000TIntronic0.0002999499783446
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0002989517810184
8593927378:59392737:C:Trs10107182TOthers-0.0002916300756289
81264817478:126481747:A:Grs2980875GIntronic-0.0002897108699067
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0002882437917458
71304333847:130433384:C:Trs4731702TOthers-0.0002882044944011
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0002871117046124
31360554593:136055459:T:Crs8045CUTRPCCB, STAG1-0.0002865990797496
8198057088:19805708:G:Ars1801177APAVsLPL0.0002841928279368
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0002817235512917
5557991845:55799184:C:Ars157843AOthers0.000277805208854
8199430278:19943027:G:Ars13265868AIntronic-0.0002734330245556
1311455313413:114553134:C:Trs7994900TIntronicGAS60.0002696009385542
11544269701:154426970:A:Crs2228145CPAVsIL6R0.0002656929210122
6324110356:32411035:A:Crs8084CPTVsHLA-DRA0.0002652017772122
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0002620024606509
223856900622:38569006:A:Grs738322GIntronicPLA2G6-0.0002612655894419
224432472722:44324727:C:Grs738409GPAVsPNPLA3-0.0002557506660457
1630739751:63073975:C:Trs6675401TUTR-0.000251948682934
139525894413:95258944:T:Crs6492721CIntronicGPR180-0.0002495278703875
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0002488129518195
168642211216:86422112:A:Grs1728407GOthers0.0002479949678683
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.0002456831438457
61610995036:161099503:G:Ars5014650AOthers-0.0002454185178201
204454504820:44545048:C:Trs4810479TOthersPLTP-0.0002446834611638
6326000576:32600057:A:Grs35242582GIntronicHLA-DQA10.0002412238238124
1111659898811:116598988:A:Grs180360GOthers-0.000237377737193
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0002328762990699
61610699416:161069941:G:Ars10945682AIntronicLPA0.0002316467965635
191932992419:19329924:C:Trs2228603TPAVsNCAN-0.0002315006027105
122047375812:20473758:C:Ars7134375AOthers-0.0002281095877683
108109607110:81096071:T:Crs7077812COthers0.0002269525045867
71304374767:130437476:G:Ars7810507AOthers0.0002267158519668
1400649611:40064961:G:Ars12037222AOthers0.0002239378480564
5784362115:78436211:C:Trs1915706TIntronicDMGDH-0.0002232417060784
7756150067:75615006:C:Trs1057868TPAVsPOR0.0002232372195582
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0002215603942817
19839896019:8398960:C:Trs201862465TPAVsKANK3-0.0002193480261885

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 6945 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References