Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Trunc.: PLs in XL VLDL

  • Estimated h2 in white British population in UKB: 0.111 (95% CI:[0.092, 0.130]).

Trunc.: PLs in XL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelTruncated (excl. BLQ measurements)R20.044[0.040, 0.048]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.047[0.043, 0.051]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.086[0.080, 0.091]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.079[0.074, 0.084]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.048[0.044, 0.052]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.135[0.128, 0.141]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.128[0.122, 0.134]<1.0x10-300
Non-British whiteCovariate-only modelTruncated (excl. BLQ measurements)R20.035[0.017, 0.053]4.5x10-12
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.044[0.024, 0.064]7.8x10-15
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.081[0.055, 0.107]1.7x10-26
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.081[0.055, 0.107]2.2x10-26
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.045[0.025, 0.065]3.7x10-15
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.123[0.092, 0.154]5.1x10-40
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.121[0.091, 0.152]1.8x10-39
South AsianCovariate-only modelTruncated (excl. BLQ measurements)R20.020[0.000, 0.040]1.9x10-04
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.034[0.008, 0.059]1.1x10-06
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.083[0.045, 0.121]1.4x10-14
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.079[0.042, 0.116]6.4x10-14
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.035[0.009, 0.060]8.8x10-07
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.100[0.059, 0.141]1.8x10-17
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.092[0.053, 0.131]4.2x10-16
AfricanCovariate-only modelTruncated (excl. BLQ measurements)R20.011[-0.006, 0.027]5.8x10-02
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.008[-0.006, 0.023]9.2x10-02
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.035[0.005, 0.064]6.0x10-04
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.024[-0.001, 0.048]4.7x10-03
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.009[-0.006, 0.024]8.4x10-02
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.044[0.011, 0.076]1.1x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.032[0.004, 0.060]1.0x10-03
OthersCovariate-only modelTruncated (excl. BLQ measurements)R20.059[0.045, 0.072]2.0x10-51
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.040[0.029, 0.052]1.6x10-35
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.072[0.057, 0.087]8.9x10-63
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.067[0.053, 0.082]5.5x10-59
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.041[0.030, 0.053]1.7x10-36
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.133[0.114, 0.151]3.0x10-118
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.128[0.109, 0.147]8.0x10-114

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023490/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 10058 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
8198135298:19813529:A:Grs268GPAVsLPL0.00339194755884
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0033717907309326
8198197248:19819724:C:Grs328GPTVsLPL-0.0029032840284196
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0027947213797402
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0025294437233279
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0023756362682783
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0023093781464217
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0021930018955345
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0019954127734253
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0017076523425857
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0016018658151692
2212315242:21231524:G:Ars676210APAVsAPOB-0.0014093206089612
194541445119:45414451:T:Crs439401COthersAPOC10.0012832847311589
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0011603280577832
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.00105535569289
81265073898:126507389:C:Ars2954038AIntronic-0.0009586144943449
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0008901619925038
8198057088:19805708:G:Ars1801177APAVsLPL0.0008375921504979
165699332416:56993324:C:Ars3764261AOthersCETP-0.0007869884895862
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0007773720056185
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0007662494305347
81264882508:126488250:C:Trs2980869TIntronic-0.0006921072200171
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0006596632553879
2212339722:21233972:T:Crs533617CPAVsAPOB-0.0006492470161064
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.0006438565145402
8182724388:18272438:C:Trs4921914TOthers-0.0006300013828695
61611070186:161107018:G:Ars9457997AOthers-0.0006238357494854
2212252812:21225281:C:Trs1042034TPAVsAPOB0.000584641362738
51563916285:156391628:T:Crs6874202COthersTIMD40.0005838387621046
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0005794954204903
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0005612446538032
194541564019:45415640:G:Ars445925AOthersAPOC10.0005541493711565
71304333847:130433384:C:Trs4731702TOthers-0.000547876446287
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0005293114021465
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0005288320368006
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0005236307904193
8198194398:19819439:A:Grs326GIntronicLPL-0.0005167828812983
165701509116:57015091:G:Crs5880CPAVsCETP0.0005079528588154
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0005066129612309
176420828517:64208285:C:Grs1801690GPAVsAPOH-0.0004961616511947
1111651152211:116511522:C:Trs519000TIntronic0.0004945762942094
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0004724704038335
8198521348:19852134:G:Trs17411024TOthers0.000463416636623
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0004548202384874
5558618945:55861894:G:Ars9687846AIntronic0.0004481593152982
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0004348079820633
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0004347689969417
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0004317473880733
167210809316:72108093:G:Ars2000999AIntronicHPR, TXNL4B0.0004288086403543
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.000425085377159
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.0004244692312669
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0004242763777698
1629167961:62916796:T:Crs583609CUTRUSP1-0.0004223014020938
61607663216:160766321:C:Trs540713TOthersSLC22A30.0004177627452603
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0004144535915264
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0004117139057652
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0004100858927737
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.000409280492548
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0004068273226583
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0004044779657373
22271014112:227101411:A:Grs2972144GOthers0.0004036279735133
8593535348:59353534:C:Trs13277801TIntronicUBXN2B-0.0004010262431644
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0003886871417467
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0003876697636924
8199430278:19943027:G:Ars13265868AIntronic-0.0003746388740676
X109689152X:109689152:A:Grs10521528GIntronicRTL9-0.0003633346425108
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0003615736782491
61609603596:160960359:T:Crs6919346CIntronicLPA-0.0003598685633759
1272785731:27278573:T:Crs17360994CPAVsKDF10.0003592149426518
135104378813:51043788:C:Trs9316497TIntronicDLEU10.0003590662112781
108109607110:81096071:T:Crs7077812COthers0.0003586682323093
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0003581850663184
1400649611:40064961:G:Ars12037222AOthers0.0003517855339304
204457650220:44576502:T:Crs7679CUTRPCIF10.0003504404174756
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0003494140545508
9866172659:86617265:A:Grs1982151GPAVsRMI10.0003488931229091
5558608665:55860866:G:Trs3936510TIntronic0.000339842368753
41005109034:100510903:A:Grs3792683GPAVsMTTP0.0003391966236495
61609536426:160953642:A:Grs41267809GPAVsLPA0.0003364320804273
61274551386:127455138:C:Trs7766106TIntronicRSPO30.0003363117734744
122047375812:20473758:C:Ars7134375AOthers-0.0003262678365121
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0003260617975113
116157138211:61571382:G:Ars174549AUTRFADS10.0003239173930419
8199145988:19914598:C:Ars6586891AOthers-0.0003205056829546
434496524:3449652:G:Ars16844401APAVsHGFAC0.0003199210722873
1311455313413:114553134:C:Trs7994900TIntronicGAS60.0003181757037658
224432472722:44324727:C:Grs738409GPAVsPNPLA3-0.0003155582829446
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0003125273168184
12302999491:230299949:T:Crs10779835CIntronicGALNT2-0.000311361704945
81264793628:126479362:C:Trs6982502TIntronic-0.0003102928709307
61610699416:161069941:G:Ars10945682AIntronicLPA0.0003015890778304
81264817478:126481747:A:Grs2980875GIntronic-0.0002983972606658
2212949752:21294975:G:Ars541041AOthers0.0002972429309405
11098213071:109821307:G:Trs583104TOthersCELSR2, PSRC10.000296724835742
7756150067:75615006:C:Trs1057868TPAVsPOR0.0002963813708619
4879967454:87996745:G:Ars17605615AIntronicAFF10.0002943805962755
61398340126:139834012:T:Grs632057GOthers-0.0002886905369836
223856900622:38569006:A:Grs738322GIntronicPLA2G6-0.0002844792431262
434460914:3446091:G:Trs3748034TPAVsHGFAC0.000282583550931
168642211216:86422112:A:Grs1728407GOthers0.0002824443707201

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 10058 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References