Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs to Tot. Lipids in CMs and XXL VLDL % (BLQ removed)

  • Estimated h2 in white British population in UKB: 0.030 (95% CI:[0.016, 0.044]).

Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.010[0.008, 0.013]3.9x10-70
white BritishGenotype-only modelBLQ (derived)R20.002[0.001, 0.003]6.9x10-13
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.042[0.038, 0.046]1.1x10-279
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.069[0.065, 0.074]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)R20.006[0.005, 0.008]1.1x10-43
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.050[0.045, 0.054]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.080[0.075, 0.085]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.007[-0.001, 0.015]5.2x10-03
Non-British whiteGenotype-only modelBLQ (derived)R20.011[0.001, 0.022]3.9x10-04
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.049[0.028, 0.071]4.2x10-14
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.049[0.028, 0.070]6.5x10-14
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.017[0.004, 0.030]9.3x10-06
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.055[0.033, 0.077]1.4x10-15
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.056[0.034, 0.078]8.4x10-16
South AsianCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.030[0.006, 0.054]1.2x10-05
South AsianGenotype-only modelBLQ (derived)R20.006[-0.005, 0.017]4.9x10-02
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.027[0.004, 0.050]2.8x10-05
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.056[0.024, 0.088]1.4x10-09
South AsianFull model (covariates and genotypes)BLQ (derived)R20.021[0.001, 0.042]2.2x10-04
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.040[0.013, 0.068]3.2x10-07
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.080[0.042, 0.117]3.6x10-13
AfricanCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.050[0.015, 0.084]1.7x10-03
AfricanGenotype-only modelBLQ (derived)R20.018[-0.004, 0.039]6.0x10-02
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[-0.006, 0.031]1.2x10-01
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.072[0.031, 0.113]1.3x10-04
AfricanFull model (covariates and genotypes)BLQ (derived)R20.001[-0.003, 0.004]7.4x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.031[0.003, 0.059]1.3x10-02
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.111[0.063, 0.159]1.7x10-06
OthersCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.022[0.013, 0.031]2.6x10-17
OthersGenotype-only modelBLQ (derived)R20.003[-0.000, 0.007]8.1x10-04
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.037[0.026, 0.049]1.3x10-28
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.062[0.048, 0.075]1.7x10-46
OthersFull model (covariates and genotypes)BLQ (derived)R20.016[0.008, 0.023]7.6x10-13
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.052[0.039, 0.065]2.9x10-39
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.078[0.063, 0.093]7.3x10-59

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023579/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3398 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
194541564019:45415640:G:Ars445925AOthersAPOC10.324761114031426
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.286465207638525
61609611376:160961137:T:Crs3798220CPAVsLPA0.240150359369467
61610101186:161010118:A:Grs10455872GIntronicLPA0.225715170169385
61610060776:161006077:C:Trs41272114TPTVsLPA-0.166351806374241
176421058017:64210580:A:Crs1801689CPAVsAPOH0.105649572200993
204455401520:44554015:T:Crs6065906COthers0.100153662255866
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.0999302834699186
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0971875527495293
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.0968222782486815
61609603596:160960359:T:Crs6919346CIntronicLPA0.0938282134214332
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0906471413678688
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0784000781657109
61610173636:161017363:G:Ars73596816AIntronicLPA0.0756052346861593
204454504820:44545048:C:Trs4810479TOthersPLTP-0.070452000717444
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0701604624537665
165699071616:56990716:C:Ars247617AOthers-0.0624087537306969
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0621317632753526
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0618135395985695
61609971186:160997118:A:Trs74617384TIntronicLPA0.057691581141935
8198197248:19819724:C:Grs328GPTVsLPL-0.0536088994913138
165700659016:57006590:C:Trs7499892TIntronicCETP0.0533930737331299
61611522406:161152240:G:Ars4252125APAVsPLG-0.0516505477554895
61609536426:160953642:A:Grs41267809GPAVsLPA-0.0497833585459672
61609215666:160921566:T:Grs9457930GIntronicLPAL20.0496665180781215
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0467133496580543
165699332416:56993324:C:Ars3764261AOthersCETP-0.0446905610655592
155872674415:58726744:G:Crs261334CIntronicALDH1A2, LIPC-0.0436180496422839
155854464415:58544644:G:Ars12594571AIntronicALDH1A20.0420141795511081
155883399315:58833993:G:Ars6078APAVsLIPC0.038942486913233
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0384871937334078
61610699416:161069941:G:Ars10945682AIntronicLPA-0.0379275824601992
1111668416411:116684164:T:Crs7396851CPAVs-0.0366514115004659
91361538759:136153875:C:Trs651007TOthersABO0.036246490417538
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0353665165420268
194537295919:45372959:C:Trs4803767TIntronicNECTIN2-0.035346299894113
61610101506:161010150:C:Trs41272078TIntronicLPA0.0353228054496024
61610813316:161081331:A:Grs1740428GIntronicLPA0.0341729386963982
2212315242:21231524:G:Ars676210APAVsAPOB-0.0320951658458853
149484484314:94844843:T:Grs1303GPAVsSERPINA1-0.0304477487765934
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0289647019198361
194534917719:45349177:G:Crs77241309COthersNECTIN2-0.0276807373511388
61611379906:161137990:G:Ars783147AIntronicPLG-0.027580940329019
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0262079077789794
155885891015:58858910:T:Crs7175421CIntronicLIPC-0.0258849750802392
91361493999:136149399:G:Ars507666AIntronicABO0.0252099931907085
204453848420:44538484:G:Trs435306TIntronicPLTP0.0249220150158257
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0240469097355365
191932992419:19329924:C:Trs2228603TPAVsNCAN0.0229201277990479
191120230619:11202306:G:Trs6511720TIntronicLDLR0.0222021160607535
12072698581:207269858:T:Crs3813948CPAVsC4BPB-0.0221736122821138
204456468220:44564682:G:Ars3848715AIntronicPCIF10.0220320637061157
1555056471:55505647:G:Trs11591147TPAVsPCSK90.0219444179777085
61610074966:161007496:G:Crs7765781CPAVsLPA-0.0216533586171585
155870306915:58703069:A:Crs17821316CIntronicALDH1A2, LIPC-0.020789061364938
7730170057:73017005:A:Grs13226650GIntronicMLXIPL-0.0202271473004997
4774172034:77417203:T:Crs2068063CIntronicSHROOM30.0198714255761944
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0191196372898593
191828594419:18285944:G:Ars11554159APAVsIFI30-0.0191020309557989
61604552546:160455254:G:Ars2297357AIntronicIGF2R0.0189733201395338
41002607894:100260789:T:Crs698CPAVsADH1C-0.0185769497555489
155873145515:58731455:T:Crs12900622CIntronicALDH1A2, LIPC-0.0183840547881502
12694846812:6948468:T:Crs1129649CPTVsP3H30.0178212320228253
91361492299:136149229:T:Crs505922CIntronicABO0.0175227821579918
1011394032910:113940329:T:Crs2792751CPAVsGPAM0.0164522947276575
155870294115:58702941:T:Crs16940233CUTRLIPC0.0163433651023542
156088328115:60883281:C:Ars339969AIntronicRORA0.016241579145128
173802863317:38028633:AG:Ars1484577410APTVsZPBP2-0.0158683474519427
116562906011:65629060:C:Trs575085TPTVsCFL10.015760429955444
172970594717:29705947:T:Crs2525574CPTVsNF10.0157136243525018
125144294412:51442944:G:Ars12379APAVsLETMD10.01570365240989
174789190417:47891904:A:Grs755736GIntronicKAT70.0155976597429283
203991138520:39911385:A:Grs6029609GIntronicZHX30.0155443895422686
61608334686:160833468:T:Grs7745775GIntronicSLC22A30.0154256575366198
224433813422:44338134:T:Crs3810622CIntronicPNPLA3-0.0153166667776847
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0152469186477687
2440662472:44066247:G:Crs11887534CPAVsABCG80.0151792242010617
1793573601:79357360:G:Crs2275902CPAVsADGRL40.0151555444253283
168998614416:89986144:C:Trs1805008TPAVsMC1R, TUBB3-0.0150887411002211
81195793498:119579349:A:Grs4512404GIntronicSAMD120.0150827002415735
5744431325:74443132:C:Trs1422698TPAVsANKRD31-0.0150442211803301
155860072215:58600722:C:Grs413458GIntronicALDH1A20.0150168446318891
155854672815:58546728:T:Crs7183294CIntronicALDH1A2-0.0146874192820015
31125459103:112545910:GT:Grs58161637GPTVsCD200R1L-0.0146564965765972
5746565395:74656539:T:Crs12916CUTRHMGCR-0.0146187182184073
710284487:1028448:C:Trs3808348TPAVsCYP2W1-0.0144924691713277
6324102106:32410210:T:Crs3129884CPAVsHLA-DRA-0.0143759270847709
201296608920:12966089:T:Grs168622GOthers-0.0143712562681251
2214141422:21414142:T:Crs503662COthers0.0142637561304007
31706281323:170628132:A:Grs6769079GOthersEIF5A20.0141564045070938
154921796715:49217967:G:Ars4774529AIntronicSHC4-0.0141443360083256
712435257:1243525:T:Crs7456553COthers0.0141269129021121
155862439615:58624396:T:Crs11637094CIntronicALDH1A2-0.0140703141493951
1212528376612:125283766:C:Trs10773105TIntronicSCARB10.0139757812627894
8662183138:66218313:G:Ars10107515AOthers-0.0137744816341132
182277518518:22775185:C:Trs1140026TPAVsZNF5210.0135952936861645
11779406121:177940612:A:Grs10158853GPAVs-0.0134199885878543
168366355116:83663551:C:Trs16961095TIntronicCDH130.0134076377226355
165699723316:56997233:G:Ars1864163AIntronicCETP0.0134036306456108
203295542320:32955423:A:Grs6087577GIntronicITCH-0.013345632348851

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3398 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References