Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. to Tot. Lipids in XL VLDL % (BLQ removed)

  • Estimated h2 in white British population in UKB: 0.115 (95% CI:[0.095, 0.135]).

Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.059[0.055, 0.064]<1.0x10-300
white BritishGenotype-only modelBLQ (derived)R20.006[0.005, 0.008]5.7x10-45
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.067[0.062, 0.072]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.073[0.068, 0.078]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)R20.006[0.004, 0.007]2.5x10-43
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.127[0.121, 0.133]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.134[0.128, 0.140]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.061[0.038, 0.085]9.5x10-19
Non-British whiteGenotype-only modelBLQ (derived)R20.003[-0.002, 0.008]6.0x10-02
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.058[0.035, 0.081]8.8x10-18
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.063[0.039, 0.086]3.4x10-19
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.009[-0.000, 0.018]8.9x10-04
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.118[0.088, 0.149]9.9x10-36
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.123[0.093, 0.154]3.2x10-37
South AsianCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.013[-0.003, 0.029]3.6x10-03
South AsianGenotype-only modelBLQ (derived)R20.011[-0.004, 0.025]8.2x10-03
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.046[0.017, 0.075]3.3x10-08
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.045[0.016, 0.074]4.2x10-08
South AsianFull model (covariates and genotypes)BLQ (derived)R20.000[-0.002, 0.003]6.3x10-01
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.061[0.028, 0.095]1.4x10-10
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.055[0.024, 0.087]1.1x10-09
AfricanCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.006[-0.007, 0.018]2.1x10-01
AfricanGenotype-only modelBLQ (derived)R20.010[-0.006, 0.026]1.0x10-01
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.059[0.021, 0.096]6.8x10-05
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.062[0.024, 0.101]3.9x10-05
AfricanFull model (covariates and genotypes)BLQ (derived)R20.001[-0.004, 0.006]6.2x10-01
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.062[0.024, 0.100]4.2x10-05
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.053[0.017, 0.088]1.7x10-04
OthersCovariate-only modelDerived (percentage traits, excl. BLQ measurements)R20.049[0.036, 0.061]6.8x10-40
OthersGenotype-only modelBLQ (derived)R20.006[0.001, 0.011]5.0x10-06
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.077[0.061, 0.092]2.3x10-62
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.085[0.069, 0.101]3.6x10-69
OthersFull model (covariates and genotypes)BLQ (derived)R20.005[0.001, 0.010]1.8x10-05
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.123[0.105, 0.141]1.5x10-101
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.131[0.113, 0.150]9.6x10-109

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI10023587/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 8003 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
1555056471:55505647:G:Trs11591147TPAVsPCSK9-0.217528951610367
191120230619:11202306:G:Trs6511720TIntronicLDLR-0.133350522606787
61610101186:161010118:A:Grs10455872GIntronicLPA0.129691810146426
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.10639029842884
194541564019:45415640:G:Ars445925AOthersAPOC1-0.101296225729432
2277309402:27730940:T:Crs1260326CPAVsGCKR0.0968001185707947
176421058017:64210580:A:Crs1801689CPAVsAPOH0.0871236927266067
61609611376:160961137:T:Crs3798220CPAVsLPA0.0857691748225969
8198197248:19819724:C:Grs328GPTVsLPL0.0748693726270993
165699332416:56993324:C:Ars3764261AOthersCETP-0.0608570932102148
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0585813201997999
191123120319:11231203:G:Ars72658867APAVsLDLR-0.0569967930129317
2212639002:21263900:G:Ars1367117APAVsAPOB0.0561206259996463
194542294619:45422946:A:Grs4420638GOthersAPOC10.0544522266462339
204455401520:44554015:T:Crs6065906COthers-0.0502589366698088
91361493999:136149399:G:Ars507666AIntronicABO0.049312278624133
165700659016:57006590:C:Trs7499892TIntronicCETP0.0486187003724852
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0482669181850862
8198135298:19813529:A:Grs268GPAVsLPL-0.0469809881958461
2440662472:44066247:G:Crs11887534CPAVsABCG8-0.0465262511827846
11098185301:109818530:C:Trs646776TOthersCELSR2, PSRC10.045752284308257
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.0430837772187193
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.0407910606512337
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0405259552150336
1111664891711:116648917:G:Crs964184CUTRZPR10.0391512807476456
61605576436:160557643:C:Trs2282143TPAVsSLC22A10.0390221154908604
176420828517:64208285:C:Grs1801690GPAVsAPOH0.0379064044640835
116155268011:61552680:G:Trs174537TOthersMYRF-0.0358124853128693
7730358577:73035857:T:Crs7800944CIntronicMLXIPL0.0347015642172492
5557991845:55799184:C:Ars157843AOthers-0.0331900917269663
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0330167623659079
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0327858215871665
167211400216:72114002:C:Trs217181TIntronicTXNL4B-0.0320181843593651
2212883212:21288321:A:Grs562338GOthers0.0313709399048768
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0312630421370115
19842932319:8429323:G:Ars116843064APAVsANGPTL40.0295500341967039
176706087217:67060872:T:Crs113408695COthersABCA90.0294595994948241
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0284646550213575
204454504820:44545048:C:Trs4810479TOthersPLTP0.027975162040903
5746168435:74616843:T:Crs10474433CIntronic0.0277295466201588
165701509116:57015091:G:Crs5880CPAVsCETP0.0271002767197066
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0268953228615274
19719497619:7194976:A:Grs4804377GIntronicINSR0.0246069823152716
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0240817017215699
116403124111:64031241:C:Trs35169799TPAVsPLCB3-0.0239847477570748
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0234069054436313
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.023282933552653
155862439615:58624396:T:Crs11637094CIntronicALDH1A2-0.0230943746314481
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0230537200518083
2440738812:44073881:T:Crs6544713CIntronicABCG8-0.0226064573472313
155883399315:58833993:G:Ars6078APAVsLIPC0.0223094654494241
71304333847:130433384:C:Trs4731702TOthers0.0218840703904865
177639543017:76395430:C:Trs2292642TPAVsPGS10.0208868870022828
194537356519:45373565:G:Ars395908AIntronicNECTIN2-0.0206047663025313
61610173636:161017363:G:Ars73596816AIntronicLPA0.0205996327280818
165700735316:57007353:C:Trs5883TPCVsCETP-0.0198886814825923
201784468420:17844684:G:Trs2618566TOthers-0.0198778502857943
155872674415:58726744:G:Crs261334CIntronicALDH1A2, LIPC-0.0198109173912669
191121656119:11216561:A:Crs12983082CIntronicLDLR0.0197930714340678
1555211091:55521109:G:Ars693668AIntronicPCSK90.0196120926181976
6325780526:32578052:G:Ars532098AOthers-0.0189053753998195
7259918267:25991826:T:Crs4722551COthersMIR148A0.0187050969080492
11509406251:150940625:T:Grs267738GPAVsCERS2-0.0186694274287521
194539526619:45395266:G:Ars157580AIntronicTOMM400.0182238809091167
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0181881260184208
1554883691:55488369:A:Grs2479393GOthers-0.018170518777139
12303018111:230301811:T:Grs11122450GIntronicGALNT20.0180317251232418
194538959619:45389596:G:Ars7254892AIntronicNECTIN2-0.0180126607390227
9153047829:15304782:C:Ars686030AIntronicTTC39B-0.0178116982333523
7445819867:44581986:T:Crs17725246COthersNPC1L10.0177139142150098
194540341219:45403412:C:Trs1160985TIntronicTOMM40-0.0174142414875598
168153479016:81534790:T:Crs2925979CIntronicCMIP0.0173376030123156
7216036787:21603678:A:Grs5008148GIntronicDNAH110.0170502566459825
122047375812:20473758:C:Ars7134375AOthers0.0169160523369919
1111677278711:116772787:C:Ars518181AIntronicSIK30.0168779117372938
61398317576:139831757:T:Crs634869COthers0.0168350488573297
1212142395612:121423956:C:Trs2393791TIntronicHNF1A-0.0167855526495174
5558618945:55861894:G:Ars9687846AIntronic-0.0167499264477132
7259975367:25997536:A:Grs4719841GOthers-0.0163653580149122
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0163537710287677
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS0.016175260765014
61611085366:161108536:C:Trs6935921TOthers0.0161699703037414
122683480412:26834804:T:TACTCrs111626763TACTCPAVsITPR2-0.0160994670500599
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.0159228443106405
116160975011:61609750:C:Trs174583TIntronicFADS2-0.0158719840486581
61605753666:160575366:G:Ars11753995AIntronicSLC22A10.015379045415727
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.0153422714482226
81264844638:126484463:C:Trs2954025TIntronic0.0152068590484475
51321809905:132180990:A:Grs17166268GOthersRNA5SP1920.0147934709104895
22270680802:227068080:A:Crs2943634COthers-0.0145899354952742
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0144949960631094
5560090125:56009012:T:Crs6862199COthers0.0143839856735705
61611070186:161107018:G:Ars9457997AOthers0.0143435139719556
177337494517:73374945:G:Ars4789182AIntronicGRB2-0.0138369480376285
81450589868:145058986:A:Grs11136343GPAVsPARP100.0137229506563576
8199414488:19941448:C:Trs6989064TIntronic0.0136975748771038
7729772497:72977249:C:Trs34594435TOthersBCL7B0.013564540187533
176644912217:66449122:G:Ars883541APAVsWIPI10.0134297344456137
191034969019:10349690:T:Crs8113091COthers0.0134000335028195
2440994332:44099433:C:Ars4148217APAVsABCG8-0.013373395105545

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 8003 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References