Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: Free Chol. in CMs and XXL VLDL


Free Chol. in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelOriginal (incl. BLQ measurements)R20.059[0.054, 0.063]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)R20.084[0.079, 0.090]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)R20.084[0.079, 0.090]<1.0x10-300
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.023[0.020, 0.025]6.1x10-192
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.104[0.098, 0.110]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.086[0.081, 0.091]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.142[0.135, 0.148]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.023[0.020, 0.026]1.5x10-195
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.164[0.157, 0.171]<1.0x10-300
Non-British whiteCovariate-only modelOriginal (incl. BLQ measurements)R20.059[0.037, 0.082]3.5x10-22
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)R20.085[0.059, 0.112]1.5x10-31
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)R20.091[0.064, 0.119]8.4x10-34
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.027[0.011, 0.043]1.2x10-10
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.107[0.078, 0.137]9.5x10-40
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.087[0.060, 0.114]4.4x10-32
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.149[0.117, 0.182]8.1x10-56
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.027[0.011, 0.043]7.9x10-11
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.169[0.135, 0.203]1.3x10-63
South AsianCovariate-only modelOriginal (incl. BLQ measurements)R20.017[-0.001, 0.036]3.1x10-04
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)R20.070[0.035, 0.106]2.1x10-13
South AsianGenotype-only modelTruncated (excl. BLQ measurements)R20.083[0.045, 0.121]1.2x10-15
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.012[-0.004, 0.027]3.3x10-03
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.100[0.059, 0.141]9.6x10-19
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.071[0.035, 0.106]1.7x10-13
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.076[0.039, 0.112]2.2x10-14
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.012[-0.003, 0.028]2.3x10-03
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.105[0.064, 0.147]1.3x10-19
AfricanCovariate-only modelOriginal (incl. BLQ measurements)R20.028[0.001, 0.054]6.9x10-05
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)R20.023[-0.001, 0.047]3.3x10-04
AfricanGenotype-only modelTruncated (excl. BLQ measurements)R20.017[-0.004, 0.038]1.8x10-03
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.001[-0.004, 0.006]4.9x10-01
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.032[0.003, 0.060]2.0x10-05
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.023[-0.001, 0.047]3.0x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.043[0.011, 0.075]6.3x10-07
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.001[-0.004, 0.006]4.7x10-01
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.059[0.022, 0.096]4.8x10-09
OthersCovariate-only modelOriginal (incl. BLQ measurements)R20.088[0.072, 0.104]5.1x10-88
OthersGenotype-only modelBLQ (binarized at BLQ threshold)R20.065[0.051, 0.080]4.1x10-65
OthersGenotype-only modelTruncated (excl. BLQ measurements)R20.061[0.048, 0.075]3.3x10-61
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.021[0.012, 0.029]1.4x10-21
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.080[0.064, 0.095]1.5x10-79
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)R20.067[0.053, 0.082]5.9x10-67
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)R20.144[0.124, 0.163]5.0x10-147
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.022[0.013, 0.030]3.4x10-22
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.163[0.143, 0.183]2.8x10-168

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23486/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 12817 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61610101186:161010118:A:Grs10455872GIntronicLPA-0.0039191094253826
61609611376:160961137:T:Crs3798220CPAVsLPA-0.0030022691094872
8198135298:19813529:A:Grs268GPAVsLPL0.0028345262621865
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.0025455051724774
8198197248:19819724:C:Grs328GPTVsLPL-0.00233780653771
194541564019:45415640:G:Ars445925AOthersAPOC10.0019110267658621
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.0018434211007291
1111664891711:116648917:G:Crs964184CUTRZPR1-0.0017490851200099
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.0015560485771014
61610173636:161017363:G:Ars73596816AIntronicLPA-0.0014630915494466
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.0014019484908623
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.0013517364178357
191937954919:19379549:C:Trs58542926TPAVsTM6SF2-0.0012772559144494
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0012739945965081
2212315242:21231524:G:Ars676210APAVsAPOB-0.0011907303087289
176421058017:64210580:A:Crs1801689CPAVsAPOH-0.0010986544333044
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0010317504123228
194541445119:45414451:T:Crs439401COthersAPOC10.0010287229531301
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.0010134437990994
1111666370711:116663707:G:Ars662799AOthersAPOA5-0.000978922724673
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0009384672219945
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B2-0.0008720809160928
81265073898:126507389:C:Ars2954038AIntronic-0.0008522910586806
8198521348:19852134:G:Trs17411024TOthers0.0008020359541826
1630270241:63027024:C:Trs4329540TIntronicDOCK70.0007551356048684
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.0006716691511423
61611070186:161107018:G:Ars9457997AOthers-0.0006672281755334
61609536426:160953642:A:Grs41267809GPAVsLPA0.0006423040963507
194543255719:45432557:G:Crs7259004CIntronicAPOC1P10.0006246119292398
8198057088:19805708:G:Ars1801177APAVsLPL0.0006134466907175
1111670556811:116705568:G:Trs10750098TOthersAPOA1-AS-0.0005418188311833
1629570301:62957030:G:Ars10889333AIntronicDOCK7-0.0005182398131956
8182724388:18272438:C:Trs4921914TOthers-0.0005141982123144
7730203017:73020301:T:Crs799157CPCVsMLXIPL-0.0005097947923965
116403124111:64031241:C:Trs35169799TPAVsPLCB30.0004942229830083
5558618945:55861894:G:Ars9687846AIntronic0.000486261346638
7730358577:73035857:T:Crs7800944CIntronicMLXIPL-0.0004761680832498
61609603596:160960359:T:Crs6919346CIntronicLPA-0.000471359957034
81264882508:126488250:C:Trs2980869TIntronic-0.00046101953537
8198244928:19824492:T:Crs13702CUTRLPL-0.0004545738999701
61609119086:160911908:C:Trs9365166TIntronicLPAL2-0.0004438532973448
22271014112:227101411:A:Grs2972144GOthers0.0004382978900571
61605576436:160557643:C:Trs2282143TPAVsSLC22A1-0.0004307333437384
21655286242:165528624:G:Trs1128249TIntronicCOBLL1-0.0004245082475611
116157138211:61571382:G:Ars174549AUTRFADS10.0004205158918638
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0004068006422896
51563916285:156391628:T:Crs6874202COthersTIMD40.000406345944707
165699332416:56993324:C:Ars3764261AOthersCETP-0.0004028757867992
1111672863011:116728630:G:Crs12225230CPAVsSIK3-0.0004002575364034
12302976591:230297659:C:Trs2281719TIntronicGALNT2-0.0003951279824881
61610101506:161010150:C:Trs41272078TIntronicLPA-0.0003907925998584
1111651152211:116511522:C:Trs519000TIntronic0.0003702698190551
1011416927610:114169276:A:Grs3736946GPAVsACSL5-0.0003650093775732
71304333847:130433384:C:Trs4731702TOthers-0.0003648793753144
61607663216:160766321:C:Trs540713TOthersSLC22A30.0003633899906593
632424101HLA-DRB3*0301HLA-DRB3*0301+PAVsHLA-DRB30.0003558542000716
11498710031:149871003:C:Trs1349532TPAVsBOLA1-0.0003454100599123
2212252812:21225281:C:Trs1042034TPAVsAPOB0.0003446201199455
61398340126:139834012:T:Grs632057GOthers-0.0003442732937861
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0003428435599536
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0003427043385086
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0003371181253084
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.0003205787010411
1111709449111:117094491:C:Trs11216322TUTRPCSK70.0003158418681313
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0003143434243843
7259918267:25991826:T:Crs4722551COthersMIR148A-0.0003136700687844
5558067515:55806751:A:Grs459193GOthers0.0003101796807647
122133154912:21331549:T:Crs4149056CPAVsSLCO1B10.0003042945742316
91393689539:139368953:G:Ars3812594APAVsSEC16A0.0003023096013903
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.0002963356256206
434496524:3449652:G:Ars16844401APAVsHGFAC0.0002928285974146
1272399201:27239920:C:Grs6659176GPAVsNR0B20.0002878933121596
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX70.0002851028245497
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.0002834735261727
4879967454:87996745:G:Ars17605615AIntronicAFF10.0002822820804163
122047375812:20473758:C:Ars7134375AOthers-0.0002816481847126
111335577011:13355770:C:Trs6486121TIntronicBMAL10.0002809438874942
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0002809350940302
171748465417:17484654:C:Trs7224725TIntronicPEMT0.0002806322171525
8593392798:59339279:T:Crs7007181CIntronicUBXN2B-0.0002764149849612
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P0.0002754372635133
1111663394711:116633947:G:Ars10488698APAVsBUD13-0.000273150087124
7756150067:75615006:C:Trs1057868TPAVsPOR0.0002683822055204
176421685417:64216854:A:Grs52797880GPAVsAPOH-0.0002673858636209
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0002637115013337
6326024306:32602430:C:Ars17211510AIntronicHLA-DQA10.0002617924365777
9866172659:86617265:A:Grs1982151GPAVsRMI10.0002561999910847
109483964210:94839642:G:Ars2068888AOthersCYP26A1-0.0002527341328965
204457650220:44576502:T:Crs7679CUTRPCIF10.0002508576748828
114720947211:47209472:G:Ars901750AOthersPACSIN3-0.000249172867428
632552086HLA-DRB1*1302HLA-DRB1*1302+PAVsHLA-DRB10.0002480472494986
114674500311:46745003:C:Trs5896TPAVsF2-0.0002456966990452
8199430278:19943027:G:Ars13265868AIntronic-0.0002442742753447
61606088046:160608804:A:Crs16891156CIntronicSLC22A2-0.0002437688561779
108109607110:81096071:T:Crs7077812COthers0.0002422568126987
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0002406289766705
6437588736:43758873:G:Ars6905288AOthersVEGFA0.0002398097644973
21655485692:165548569:G:Ars10490694AIntronicCOBLL1-0.0002393241214868
8198194398:19819439:A:Grs326GIntronicLPL-0.0002377417420168
5558608665:55860866:G:Trs3936510TIntronic0.0002368702541251

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 12817 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References