Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: PLs to Tot. Lipids in CMs and XXL VLDL %


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.025[0.022, 0.029]7.5x10-208
white BritishGenotype-only modelBLQ (derived)R20.017[0.015, 0.020]2.7x10-143
white BritishGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.027[0.024, 0.030]3.4x10-219
white BritishGenotype-only modelOriginal (incl. BLQ measurements)R20.017[0.014, 0.019]1.3x10-137
white BritishGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.041[0.038, 0.045]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (derived)R20.042[0.038, 0.046]<1.0x10-300
white BritishFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.049[0.045, 0.053]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.026[0.023, 0.029]1.8x10-212
white BritishFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.066[0.062, 0.071]<1.0x10-300
Non-British whiteCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.034[0.016, 0.052]9.8x10-13
Non-British whiteGenotype-only modelBLQ (derived)R20.016[0.003, 0.028]1.7x10-06
Non-British whiteGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.014[0.002, 0.026]4.5x10-06
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)R20.022[0.008, 0.037]8.7x10-09
Non-British whiteGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.037[0.018, 0.055]1.3x10-13
Non-British whiteFull model (covariates and genotypes)BLQ (derived)R20.050[0.029, 0.072]3.4x10-18
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.049[0.028, 0.070]1.3x10-17
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.035[0.017, 0.052]7.0x10-13
Non-British whiteFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.070[0.046, 0.095]5.5x10-25
South AsianCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.009[-0.004, 0.023]8.9x10-03
South AsianGenotype-only modelBLQ (derived)R20.011[-0.004, 0.025]5.3x10-03
South AsianGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.022[0.001, 0.043]5.5x10-05
South AsianGenotype-only modelOriginal (incl. BLQ measurements)R20.009[-0.005, 0.022]1.1x10-02
South AsianGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.024[0.002, 0.045]2.9x10-05
South AsianFull model (covariates and genotypes)BLQ (derived)R20.019[-0.000, 0.039]1.5x10-04
South AsianFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.027[0.004, 0.049]9.3x10-06
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.010[-0.004, 0.025]5.7x10-03
South AsianFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.031[0.007, 0.056]1.5x10-06
AfricanCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.031[0.003, 0.060]1.2x10-04
AfricanGenotype-only modelBLQ (derived)R20.011[-0.006, 0.028]2.4x10-02
AfricanGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.017[-0.004, 0.038]4.5x10-03
AfricanGenotype-only modelOriginal (incl. BLQ measurements)R20.011[-0.006, 0.027]2.5x10-02
AfricanGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.029[0.002, 0.056]2.2x10-04
AfricanFull model (covariates and genotypes)BLQ (derived)R20.040[0.009, 0.072]1.3x10-05
AfricanFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.046[0.013, 0.079]3.0x10-06
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.031[0.003, 0.060]1.2x10-04
AfricanFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.056[0.020, 0.093]2.2x10-07
OthersCovariate-only modelDerived (percentage traits, incl. BLQ measurements)R20.034[0.024, 0.045]3.3x10-33
OthersGenotype-only modelBLQ (derived)R20.023[0.014, 0.032]1.3x10-22
OthersGenotype-only modelDerived (percentage traits, excl. BLQ measurements)R20.021[0.012, 0.029]1.0x10-20
OthersGenotype-only modelOriginal (incl. BLQ measurements)R20.026[0.017, 0.035]2.7x10-25
OthersGenotype-only modelDerived (percentage traits, incl. BLQ measurements)R20.038[0.027, 0.049]1.5x10-36
OthersFull model (covariates and genotypes)BLQ (derived)R20.053[0.040, 0.066]9.5x10-51
OthersFull model (covariates and genotypes)Derived (percentage traits, excl. BLQ measurements)R20.054[0.041, 0.067]1.7x10-51
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)R20.034[0.023, 0.044]1.7x10-32
OthersFull model (covariates and genotypes)Derived (percentage traits, incl. BLQ measurements)R20.071[0.056, 0.085]1.9x10-67

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/INI23579/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 4781 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
194541564019:45415640:G:Ars445925AOthersAPOC10.455814945572828
19842932319:8429323:G:Ars116843064APAVsANGPTL4-0.445403163334115
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.371899079468053
8198135298:19813529:A:Grs268GPAVsLPL0.240212498850574
8198197248:19819724:C:Grs328GPTVsLPL-0.231144223317025
1111664891711:116648917:G:Crs964184CUTRZPR1-0.219191294380599
2212315242:21231524:G:Ars676210APAVsAPOB-0.215368403434329
165699071616:56990716:C:Ars247617AOthers-0.180817489765773
61610060776:161006077:C:Trs41272114TPTVsLPA-0.164270122377514
154382071715:43820717:C:Trs55707100TPAVsMAP1A0.147471105857897
204454504820:44545048:C:Trs4810479TOthersPLTP-0.144629778018305
165700659016:57006590:C:Trs7499892TIntronicCETP0.138690636171613
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.133763467287533
7730120427:73012042:G:Ars35332062APAVsMLXIPL-0.129204237786483
204455401520:44554015:T:Crs6065906COthers0.128690644591223
1111669229311:116692293:C:Ars12721043APAVsAPOA4-0.119476808197611
155867851215:58678512:C:Trs10468017TIntronicALDH1A20.113681867160383
8198246678:19824667:C:Trs15285TUTRLPL-0.107618968286149
174192612617:41926126:C:Trs72836561TPAVsCD300LG0.10287482101085
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS20.101771458162795
165699332416:56993324:C:Ars3764261AOthersCETP-0.10142347868922
204456468220:44564682:G:Ars3848715AIntronicPCIF10.1011134088713
155867966815:58679668:G:Ars7350789AIntronicALDH1A20.0996236636042924
165700735316:57007353:C:Trs5883TPCVsCETP-0.0991729177342663
1111665756111:116657561:C:Trs3741298TIntronicZPR1-0.0956410092218821
155868336615:58683366:A:Grs1532085GIntronicALDH1A2-0.0868590690485187
1011394032910:113940329:T:Crs2792751CPAVsGPAM0.085326681100687
1631181961:63118196:A:Crs10889353CIntronicDOCK7-0.0804922222864775
1111668416411:116684164:T:Crs7396851CPAVs-0.0800071935647685
61610699416:161069941:G:Ars10945682AIntronicLPA-0.079643935403491
155868918715:58689187:T:Crs11855284CIntronicALDH1A20.0763267209417494
8199414488:19941448:C:Trs6989064TIntronic-0.0746506417783303
8198309218:19830921:C:Trs10096633TOthers-0.0737763607084614
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.0725381320937045
5558608665:55860866:G:Trs3936510TIntronic0.0707627916792771
224432472722:44324727:C:Grs738409GPAVsPNPLA30.0703067495057804
61611522406:161152240:G:Ars4252125APAVsPLG-0.06796213445579
149484484314:94844843:T:Grs1303GPAVsSERPINA1-0.067875328754255
165701509116:57015091:G:Crs5880CPAVsCETP0.0672779940451422
891872428:9187242:A:Grs1461729GIntronic-0.0650086046301128
1111704237711:117042377:G:Ars4936367APAVsPAFAH1B2-0.0646148154873193
61608820296:160882029:G:Ars2063347AIntronicLPAL20.0622276440818202
204453848420:44538484:G:Trs435306TIntronicPLTP0.0611362845189662
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.0611168608441302
204453465120:44534651:G:Ars6065904AIntronicPLTP0.0609404254129853
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.059496122335304
61610074966:161007496:G:Crs7765781CPAVsLPA-0.0583386372248508
125784371112:57843711:G:Ars2229357APAVsINHBC-0.0569987590282972
434460914:3446091:G:Trs3748034TPAVsHGFAC0.0553970024467192
1111666240711:116662407:G:Crs3135506CPAVsAPOA50.0550316461221007
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS20.0548924235501578
1212442730612:124427306:T:Ars11057401APAVsCCDC92-0.051990380292042
134089500613:40895006:A:Crs4943767COthers-0.0517369487653191
81264998788:126499878:G:Ars4351435AIntronic-0.0499185028524511
194537356519:45373565:G:Ars395908AIntronicNECTIN20.0496180923868838
12302956911:230295691:G:Ars4846914AIntronicGALNT2-0.0479414941818553
166797632016:67976320:A:Trs4986970TPAVsLCAT0.0466723524544132
194538959619:45389596:G:Ars7254892AIntronicNECTIN20.0463661425236625
116159721211:61597212:C:Trs174570TIntronicFADS20.0453860914213469
201296608920:12966089:T:Grs168622GOthers-0.0447863806558721
5527879265:52787926:A:Grs11954686GOthersFST0.0439062212068304
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC1-0.0431416363420699
81264817478:126481747:A:Grs2980875GIntronic-0.0430074463478877
91361538759:136153875:C:Trs651007TOthersABO0.0421522012620854
7730170057:73017005:A:Grs13226650GIntronicMLXIPL-0.0407962997411869
174193137517:41931375:A:Grs12453522GPAVsCD300LG0.0401491971884785
51310081945:131008194:T:Crs26008CPAVsFNIP1-0.0394584401810104
434496524:3449652:G:Ars16844401APAVsHGFAC0.0392474468316937
8198194398:19819439:A:Grs326GIntronicLPL-0.0386585852052347
195748842319:57488423:C:Trs8102873TOthers0.037924105917193
9220880949:22088094:A:Grs10738607GIntronicCDKN2B-AS10.0377798672507955
114727025511:47270255:C:Trs2167079TPAVsACP2-0.0375506015356305
1111663994111:116639941:A:Grs1263149GIntronicBUD13-0.0373643079011178
168153479016:81534790:T:Crs2925979CIntronicCMIP-0.0373561800962901
61609603596:160960359:T:Crs6919346CIntronicLPA0.0372817916607965
61609971186:160997118:A:Trs74617384TIntronicLPA0.0370611838452436
1111663394711:116633947:G:Ars10488698APAVsBUD13-0.0358337537981007
2384251072:38425107:T:Crs232585COthers0.0354234160726704
171747117517:17471175:G:Ars4646356AIntronicPEMT0.0351117982026815
61554420106:155442010:T:Crs2062409CIntronicTIAM20.0344736583347011
81265169888:126516988:T:Crs4512391CIntronic0.0338612531638262
114764042911:47640429:G:Crs1064608CPAVsMTCH20.0338386033319588
163001872016:30018720:C:Trs12921753TOthersDOC2A0.0330499505225203
1212526159312:125261593:C:Trs838880TUTRSCARB10.0330418575692856
191414166619:14141666:G:Trs78161395TPAVsRLN30.0329492272760092
206269602420:62696024:C:Trs6062344TIntronicTCEA2-0.0321747610676348
61398406936:139840693:A:Crs592423COthers-0.0320656199324394
7730467797:73046779:A:Grs17145817GOthers-0.0317969080834478
21351503822:135150382:A:Crs10928493CIntronicMGAT5-0.0317630535525268
11539946471:153994647:C:Trs11264875TPAVsNUP210L0.0316540860778667
204460760120:44607601:A:Grs6104410GOthersFTLP1-0.0316490085008218
167520126216:75201262:A:Grs11643063GIntronicZFP1-0.0314256960022347
1403951691:40395169:A:Grs3103780GOthers0.0313719455038556
1111662470311:116624703:G:Trs180326TIntronicBUD13-0.0310181900414069
12209700281:220970028:A:Grs2642438GPAVsMTARC1-0.0309762067570153
204634059620:46340596:T:Crs4239651CIntronicSULF2-0.0308977045104576
22084778522:208477852:G:Ars2551949APAVsMETTL21A0.0308644259373686
3385662353:38566235:G:Trs1073506TUTREXOG-0.0307895282263052
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.0307450777364244
1212363893012:123638930:G:Ars1727315APAVsMPHOSPH90.0306761046260785

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 4781 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References